Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
نویسندگان
چکیده
Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution <1.5 A and the set of nonredundant protein structures from the PDB. The former was used to determine the distances between each metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.
منابع مشابه
Synthesis and Spectral Studies on Thorium (IV) Coordination Compounds of 4-[N-(2-Hydroxybenzalidene)amino] AntipyrineSmeicarbazone and 4-[N-Cinnamalidene) amino] ANtipyrine Semicarbazone
The stereochemistry of the actinide elements has recently undergone considerable development and a wide variety of coordination numbers and geometries have been observed. This structural versatility arises from the lack of strong crystal field effects for the 5f-electronic configurations as well as from the large ionic radii of these metal ions, which change markedly with oxidation number, ...
متن کاملPrediction of structures of zinc-binding proteins through explicit modeling of metal coordination geometry.
Metal ions play an essential role in stabilizing protein structures and contributing to protein function. Ions such as zinc have well-defined coordination geometries, but it has not been easy to take advantage of this knowledge in protein structure prediction efforts. Here, we present a computational method to predict structures of zinc-binding proteins given knowledge of the positions of zinc-...
متن کاملThe involvement of amino acid side chains in shielding the nickel coordination site: an NMR study.
Coordination of proteins and peptides to metal ions is known to affect their properties, often by a change in their structural organization. Side chains of the residues directly involved in metal binding or very close to the coordination centre may arrange themselves around it, in such a way that they can, for instance, disrupt the protein functions or stabilize a metal complex by shielding it ...
متن کاملIntroducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation
The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...
متن کاملBioMe: biologically relevant metals
In this article, we introduce BioMe (biologically relevant metals), a web-based platform for calculation of various statistical properties of metal-binding sites. Users can obtain the following statistical properties: presence of selected ligands in metal coordination sphere, distribution of coordination numbers, percentage of metal ions coordinated by the combination of selected ligands, distr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 64 Pt 3 شماره
صفحات -
تاریخ انتشار 2008